A Unified Algorithm for One-Cass Structured Matrix Factorization with Side Information
نویسندگان
چکیده
In many applications such as recommender systems and multi-label learning the task is to complete a partially observed binary matrix. Such PU learning (positive-unlabeled) problems can be solved by one-class matrix factorization (MF). In practice side information such as user or item features in recommender systems are often available besides the observed positive user-item connections. In this work we consider a generalization of one-class MF so that two types of side information are incorporated and a general convex loss function can be used. The resulting optimization problem is very challenging, but we derive an efficient and effective alternating minimization procedure. Experiments on largescale multi-label learning and one-class recommender systems demonstrate the effectiveness of our proposed approach.
منابع مشابه
An EM Algorithm for Estimating the Parameters of the Generalized Exponential Distribution under Unified Hybrid Censored Data
The unified hybrid censoring is a mixture of generalized Type-I and Type-II hybrid censoring schemes. This article presents the statistical inferences on Generalized Exponential Distribution parameters when the data are obtained from the unified hybrid censoring scheme. It is observed that the maximum likelihood estimators can not be derived in closed form. The EM algorithm for computing the ma...
متن کاملA social recommender system based on matrix factorization considering dynamics of user preferences
With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...
متن کاملجداسازی طیفی و مکانی تصاویر ابرطیفی با استفاده از Semi-NMF و تبدیل PCA
Unmixing of remote-sensing data using nonnegative matrix factorization has been considered recently. To improve performance, additional constraints are added to the cost function. The main challenge is to introduce constraints that lead to better results for unmixing. Correlation between bands of Hyperspectral images is the problem that is paid less attention to it in the unmixing algorithms. I...
متن کاملHierarchical Bayesian Matrix Factorization with Side Information
Bayesian treatment of matrix factorization has been successfully applied to the problem of collaborative prediction, where unknown ratings are determined by the predictive distribution, inferring posterior distributions over user and item factor matrices that are used to approximate the user-item matrix as their product. In practice, however, Bayesian matrix factorization suffers from cold-star...
متن کاملVoice-based Age and Gender Recognition using Training Generative Sparse Model
Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017